The influence of functional unit on life cycle assessment of lamps: a review of results

Autores

  • Mariane Scheffer Nazaro Centro Tecnológico, Universidade Federal de Santa Catarina, Florianópolis, SC
  • Guilherme Marcelo Zanghelini Programa de Pós-Graduação em Engenharia Ambiental, Campus Universitário, Universidade Federal de Santa Catarina, Florianópolis, SC https://orcid.org/0000-0002-5488-6279
  • Edivan Cherubini Programa de Pós-Graduação em Engenharia Ambiental, Universidade Federal de Santa Catarina, Florianópolis, SC https://orcid.org/0000-0001-7363-6075
  • Karlan Rau Campus Blumenau, Instituto Federal de Educação, Ciência e Tecnologia Catarinense, Blumenau, SC http://orcid.org/0000-0001-6103-1378
  • Sebastião Roberto Soares Departamento de Engenharia Sanitária, Centro Tecnológico, Universidade Federal de Santa Catarina, Florianópolis, SC https://orcid.org/0000-0003-0883-5312

DOI:

https://doi.org/10.18225/lalca.v1i1.1884

Resumo

As lâmpadas foram desenvolvidas da tecnologia incandescente, para a fluorescente e para o diodo emissor de luz (LED), o que aumentou a eficiência na conversão da iluminação e estendeu a vida útil do produto, consequentemente ocasionando na diminuição dos impactos ambientais. No entanto, a melhoria da fase de uso das lâmpadas, exige um sistema de produção mais complexo, incluindo (por vezes) materiais perigosos, o que piorou também sua disposição final. Estudos de Avaliação do Ciclo de Vida (ACV) são desenvolvidos desde 1996 envolvendo lâmpadas, e agora, com a evolução da tecnologia, as comparações estão ficando mais comuns. Esses estudos geram resultados variados, em que a unidade funcional (UF) desempenha um papel fundamental para gerar essas diferenças, mesmo quando os sistemas de produto são semelhantes, dificultando a compreensão das comparações. O objetivo deste artigo é analisar a produção científica de ACVs de lâmpadas, desenvolvendo um panorama dos sistemas de produto e suas definições de UF, bem como dos resultados, para indicar tendências e padrões da aplicação neste tema. A metodologia proposta foi de uma revisão integrativa da literatura aplicada a bases de dados científicos e outros documentos. A pesquisa identificou 16 artigos, onde ficou evidente o recente aumento dos estudos de ACVs comparativos. Nesta amostragem foram encontradas quatro diferentes definições de UF. Contudo, uma descrição complementar do desempenho do produto permite equalizar a UF numa base comum, em que os valores para a mudança climática têm mostrado que as lâmpadas LED são preferíveis às lâmpadas fluorescentes, que são preferíveis às incandescentes. Embora a comparação tenha sido possível, a UF deve ser claramente indicada para representar a função dos produtos, neste caso: a quantidade de lúmen.horas.

 

Resumen

 

Las lámparas se han desarrollado a partir de la tecnología incandescente, fluorescente, y un diodo emisor de luz (LED), lo que significa un aumento de la eficiencia de conversión de luz, que extiende la vida útil del producto y reduce así el impacto ambiental. Sin embargo, mejorar la fase de uso de las lámparas requiere un sistema de producción más complejo, incluyendo (a veces) materiales peligrosos, lo que empeora la disposición final. La Análisis del Ciclo de Vida (ACV) se ha dirigido a las lámparas desde 1996, y ahora con su evolución, las comparaciones son cada vez más comunes. Estos estudios llevan a resultados diferentes, donde la unidad funcional (UF) tiene un papel clave para la generación de estas diferencias, mismo cuando los sistemas de productos son similares, lo que dificultaría la comprensión general de las comparaciones. El objetivo fue analizar la producción científica de ACV de lámparas, el desarrollo de un marco de sistemas de productos, la definición de UF y los resultados para indicar tendencias y normas de aplicación de la metodología del ACV, incluyendo las posibilidades de comparabilidad. La metodología propuesta fue una revisión integrativa de la literatura aplicada a bases de datos científicas y análisis de contenido de documentos adicionales. La investigación identificó 16 artículos, donde está claro el reciente aumento en los estudios comparativos de ACV dirigidos a las tecnologías de iluminación. Había 4 diferentes definiciones de UF en los documentos. Sin embargo, la descripción adicional del rendimiento del producto permite equiparar el UF a una base común, donde los valores para el cambio climático han demostrado que las lámparas LED son mejores que las fluorescentes, que a su vez son preferibles que las incandescentes. Aunque esto podría ser posible, UF debe estar siempre claramente indicado y representar la función de los productos, en este caso la cantidad lúmen.hora de una lámpara

 

Abstract

 

Lamps have been developed since incandescent technology, to fluorescent and light emitted diode (LED), increasing lighting conversion efficiency, extending product’s life span, and, consequently, decreasing environmental impacts. However, improving the use phase of lamps demand a more complex production system, including (sometimes) hazardous materials, what have worsened final disposal as well. Life Cycle Assessment (LCA) has been addressed to lamps since 1996, and now with its evolution, comparisons are getting more common. These studies lead to different results, wherein functional unit (FU) plays a key role to generate these differences, even when product systems are similar, making difficult the overall understanding of comparisons. We aimed to analyze the scientific production of LCA of lamps, developing a framework of the product systems, the FU definition and the results to indicate trends and patterns of the LCA methodology application, including comparison possibilities. The proposed methodology was an integrative literature review applied to scientific databases and further papers content analysis. The survey identified 16 papers, where it is clear the recent increase on comparative LCA studies addressed to lighting technologies. There were 4 different FU definitions in papers. However, complementary description of product performance enable one to equalize FU into a common basis, wherein values for climate change have shown that LED lamps are preferable than fluorescents, that are preferable than incandescent. Even though this was possible, FU should be clearly indicated and represent products function, in this case: an amount of lumen-hour.

Referências

ABNT, (2013), ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR ISO/CIE 8995-1:2013: Iluminação de ambientes de trabalho Parte 1: interior. Rio de Janeiro, versão digital, 2013. 46 p.

APISITPUVAKUL, W., PIUMSOMBOON, P., WATTS, D.J., KOETSINCHAI, W. (2008). LCA of spent fluorescent lamps in Thailand at various rates of recycling. Journal of Cleaner Production, 16, 1046-1061.

ASARI, M; FUKUI, K; SAKAI, S., (2008), Life-cycle flow of mercury and recycling scenario of fluorescent lamps in Japan. Science of The Total Environment, 393 (1), p. 1–10.

BEZERRA, F. L; FAVACHO, C. H; SOUZA, R. N; DE SOUZA, C. R. B., (2014), Towards supporting systematic mappings studies: an automatic snowballing approach, In: Proceedings of the XXIX Simpósio Brasileiro de Banco de Dados (SBBD), Curitiba, PR.

BRASIL, (2009), Lei n 12.187, de 29 de Dezembro de 2009, Política Nacional sobre Mudança do Clima – PNMC, D.O.U. DE 29/12/2009, 109 (Edição Extra)

BRASIL, (2010), Lei n 12.305, de 02 de Agosto de 2010, Política Nacional de Resíduos Sólidos – PNRS, D.O.U. DE 03/08/2010, 2.

BRASIL, Ministério do Meio Ambiente – MMA (2011), Plano de Ação para Produção e Consumo Sustentáveis – PPCS, On line at: http://www.mma.gov.br/responsabilidade-socioambiental/producao-e-consumo-sustentavel/plano-nacional.

BROOME M.E. (1993) Integrative literature reviews for the development of concepts. In Concept Development in Nursing, 2nd edn (Rodgers B.L. & Knafl K.A., eds), W.B. Saunders Co., Philadelphia, PA, 231–250.

CHEHEBE, J. R. B. , (2002), Análise do Ciclo de Vida de Produtos: Ferramenta Gerencial da ISO 14000. Rio de Janeiro: Qualitymark Ed., CNI, 104.

CHEN, H; YANG, Y; YANG, JIANG, W; ZHOU, J., (2014), A bibliometric investigation of life cycle assessment research in the web of science databases. Int J Life Cycle Assess, 19: 1674–1685.

CHERUBINI, E; RIBEIRO, P., (2015), Projeto Diálogos Setoriais Brasil: União Europeia sobre Análise do Ciclo de Vida. Brasília, 171.

CHOUDHARY S, LIANG S, CAI H, ET al (2014) Reference and functional unit can change bioenergy pathway choices. Int J Life Cycle Assess., 19:796–805.

CONAMA, 2002. Resolução 297. Estabelece os limites para emissões de gases poluentes por ciclomotores, motociclos e veículos similares novos. Data da legislação: 26/02/2002. Publicação DOU nº 051, de 15/03/2002, 86-88.

CPUC, (2008), California Public Utilities Commission, California long term energy efficiency strategic plan, Adopted by the CPUC in February of 2008, On line at: http://www.cpuc.ca.gov/WorkArea/DownloadAsset.aspx?id=5305

DOE, (2012a), Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products, Part 1: Review of the Life-Cycle Energy Consumption of Incandescent, Compact Fluorescent, and LED Lamps. US Department of Energy (DoE), Washington DC, On line at: http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/2012_LED_Lifecycle_Report.pdf

DOE, (2012b), Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products, Part 2: LED Manufacturing and Performance. US Department of Energy (DoE), Washington DC, On line at: http://www.pnnl.gov/main/publications/external/technical_ reports/PNNL-21443.pdf

EC, (2005), Directive 2005/32/EC of the European Parliament and of the Council; establishing a framework for the setting of ecodesign requirements for energy-using products and amending Council Directive 92/42/EEC and Directives 96/57/EC and 2000/55/ EC of the European Parliament and of the Council.

ECKELMAN, M.J; ANASTAS, P.T; ZIMMERMAN, J. BB. (2008) Spatial Assessment of Net Mercury Emissions from the Use of Fluorescent Bulbs. Environmental Science & Technology, 42, 8564-8570.

ELIJOŠIUTĖ, E., BALCIUKEVIČIŪTĖ, J., DENAFAS, G. (2012) Life Cycle Assessment of compact fluorescent and incandescent lamps: comparative analysis. Environmental Research, Engineering and Management, 3(61), 65-72.

EPA, 2009. Scope 1 and 2 GHG emissions reduction goal. EPA's Greenhouse Gas Reduction Goals and Strategies, 2.

HADI, S. A., AL KAABI, M. R., AL ALI, M. O., ARAFAT, H. A., (2013), Comparative Life Cycle Assessment (LCA) of street light technologies for minor roads in United Arab Emirates. Energy for Sustainable Development, 17, 438-450.

HOU, Q. MAO, G. ZHAO, L. DU, H. ZUO, J., (2015), Mapping the scientific research on life cycle assessment: a bibliometric analysis. Int J Life Cycle Assess, 20: 541-555.

IEA, 2014. Key World Energy Statistics. International Energy Agency, 82.

IPCC, Intergovernmental Panel on Climate Change, 2007, Climate Change 2007: The Scientific Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [S. Solomon et al. (eds)], Cambridge Univ. Press, New York.

IPCC, Intergovernmental Panel on Climate Change, 2013. Summary for Policymakers, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stoker, T.F., D.Qin, G-K. Plattner, et al. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York.

ISO 14040, (2006a), Environmental management: Life cycle assessment: Principles and framework, On line at: http://www.iso.org/iso/catalogue_detail?csnumber=37456.

ISO 14044, (2006b), Environmental management: Life cycle assessment: Requirements and guidelines, On line at: http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=38498

JALALI, S., WOHLIN, C., (2012), Systematic literature studies: database searches vs. backward snowballing. In Proceedings of the ACM-IEEE International Symposium on Empirical Software Engineering and Measurement, ESEM’12, Lund,Sweden, 29–38.

LIM, S., KANG, D., OGUNSEITAN, O.A., SCHOENUNG, J.M. (2013). Potential Environmental Impacts from the Metals in incandescent, Compact Fluorescent Lamp (CFL), and Light-Emitting Diode (LED) bulbs. Environmental Science and Technology, 47, 1040-1047.

LISTER, G.G; LAWLER, J.E; LAPATOVICH, W.P; GODYAK, V.A., (2004) The physics of discharge lamps. Rev. Mod. Phys., 76, 541.

MENDES, K. D. S., SILVEIRA, R. C. C. P., GALVÃO, C. M. (2008). Revisão integrativa: método de pesquisa para a incorporação de evidências na saúde e na enfermagem. Texto & Contexto Enfermagem, 17(4), 758-764.

MINISTÉRIO DE MINAS E ENERGIA – MME, (2013). Balanço Energético Nacional, 55, On line at: https://ben.epe.gov.br/downloads/Relatorio_Final_BEN_2013.pdf

OECD/IEA, (2006), Organization for Economic Co-operation and Development and International Energy Agency. World Energy Outlook, 2006, Head of Publications Service, Paris, France, 600, On line at: https://www.iea.org/publications/freepublications/publication/ weo2006.pdf

OSRAM, (2009), Life Cycle Assessment of Illuminants: a comparison of light bulbs, compact fluorescent lamps and LED lamps, 26, On line at: http://www.indiaenvironmentportal.org.in/files/OSRAM_LED_LCA_Summary_November_2009.pdf

PARANÁ, (2015), Richa lança programas que ajudam a economizar energia. Seção Mais Economia. Agência de Notícias do Paraná. Junho de 2015. Acesso em Setembro de 2015, On line at: http://www.aen.pr.gov.br/modules/noticias/article.php?storyid=84690.

PARSON, D., (2006). The environemntal impacts of compact fluorescent lamps and incandescent lamps for Australian conditions. Journal of the Society for Sustainability and Environmental Engineering, Institution of Engineers, Australia, 7, 8-14.

PORTAL BRASIL, (2015), Lâmpada incandescente de 60 watts sai do Mercado. On line at: http://www.brasil.gov.br/infraestrutura/2015/07/lampada-incandescente-de-60-watts-sai-do-mercado.

PRINCIPI, P., FIORETTI, R. (2014). A comparative Life Cycle Assessment of luminaires for general lighting for the office – compact fluorescent (CFL) vs Light Emitting Diode (LED) – a case study. Journal of Cleaner Production, 83, 96-107.

PROCEL, 2006. Dicas de economia de energia. PROCEL Info, On line at: http://www.procelinfo.com.br/

PRUDÊNCIO DA SILVA V, VAN DER WERF HMG, SOARES SR, CORSON MS (2014) Environmental impacts of French and Brazilian broiler chicken production scenarios: An LCA approach, J Environ Manage, 133:222–231.

QUIRK, I. (2009). Life-Cycle assessment and policy implications of energy efficient lighting technologies. Lighting Life-Cycle Assessment.

RAMROTH, L., (2008). Comparision of Life-Cycle Analyses of compact fluorescent and incandescent lamps on rated life of compact fluorescent lamps. From the Reports of Rocky Mountain Institute 2008.

REAP J, ROMAN F, DUNCAN S, BRAS B (2008) A survey of unresolved problems in life cycle assessment. Part 1: goal and scope and inventory analysis. Int J Life Cycle Assess, 13: 290–300.

SANGWAN, K.S., BHAKAR, V., NAIK, S., ANDRAT, S.N. (2014). Life cycle assessment of incandescent, fluorescent, compact fluorescent and light emiting diode lamps in an India scenario. 21st CIRP Conference of Life Cycle Engineering, 467-472.

SÃO PAULO, 2001. Decreto nº 45.643, de 26 de janeiro de 2001. Dispõe sobre a obrigatoriedade da aquisição pela Administração Pública Estadual de lâmpadas de maior eficiência energética e menor teor de mercúrio, por tipo e potência, e dá providências correlatas, On line at: http://www.mma.gov.br/estruturas/a3p/_arquivos/decreto_45643_36.pdf

SCHAU, E.M., FET, A.M. (2008). LCA studies of food products as background for environmental product declarations. International Journal of Life Cycle Assessment, 13, 255–264.

TÄHKÄMÖ, L., BAZZANA, M., RAVEL, P., GRANNEC, F., MARTINSONS, C., ZISSIS, G. (2013). Life cycle assessment of light-emitting diode downlight luminaire – a case study. International Journal of Life Cycle Assessment, 18, 1009 – 1018.

TAN, Q., SONG, Q., LI, JINHUI. (2015). The environmental performance of fluorescent lamps in China, assessed with the LCA method. International Journal of Life Cycle Assessment, 20, 807-818.

TRIFUNOVIC, J; MIKULOVIC, Z; DJURISIC, M; DJURIC, M; KOSTIC. (2009) Reductions in electricity consumption and power demand in case of the mass use of compact fluorescent lamps. Energy, 34, p. 1355–1363.

TYSZLER M, KRAMER G, BLONK H (2014) Comparing apples with oranges: on the functional equivalence of food products for comparative LCAs. Int J Life Cycle Assess 19:1482–1487. doi: 10.1007/s11367-014-0762-x

UN, 2010. Report of the Conference of the Parties on its fifteenth session, held in Copenhagen from 7 to 19 December 2009. Part Two: Action taken by the Conference of the Parties at its fifteenth session. United Nations, FCCC/CP/2009/11/Add.1 30 March 2010, 30.

WELZ, T., HISCHIER, R., HILTY, L.M. (2011). Environmental impcats of lighting technologies – Life Cycle Assessment and sensitivity analysis. Environmental Impact Assessment Review, 31, 334-343.

WWF (2014). Living Planet Report 2014: species and spaces, people and places, 180.

ZANGHELINI, G.M; SOUZA JUNIOR, H.R.A; KULAY, L; CHERUBINI, E; RIBEIRO, P.T; SOARES, S.R. 2016. A bibliometric overview of Brazilian LCA research. Regional Topics From Latin America. The International Journal of Life Cycle Assessment, 1-17. First online: 18 May 2016.

Downloads

Publicado

18/07/2017

Como citar

Nazaro, M. S., Zanghelini, G. M., Cherubini, E., Rau, K., & Soares, S. R. (2017). The influence of functional unit on life cycle assessment of lamps: a review of results. LALCA: Revista Latino-Americana Em Avaliação Do Ciclo De Vida, 1(1), 9–44. https://doi.org/10.18225/lalca.v1i1.1884

Edição

Seção

Artigos de Revisão

Artigos mais lidos pelo mesmo(s) autor(es)