COEVOLUTION: MAPPING TRENDS AND INFLUENCES ON SOCIO-NATURAL DYNAMICS AND INNOVATIONS
mapeando tendências e influências nas dinâmicas sócio-naturais e inovações
DOI:
https://doi.org/10.21728/p2p.2025v11n2e-7450Keywords:
Camouflage, Assisted pollination, Red Queen HypothesisAbstract
Coevolution is a fascinating phenomenon that manifests itself in various ways in the natural world, including symbiosis, pollination, camouflage, predation, arms race, and competition. These processes illustrate the complex web of interactions that shape biodiversity and the dynamics of ecosystems. When applied to the relationship between society and technology, this idea captures the essence of how biological capacities and innovations shape each other. The objective of this work was to carry out a literature review on biological coevolution and its influence on socio-national dynamics and innovations. The data survey was conducted from 2004 to 2024 in the web of science and scopus databases. Research in coevolution, by exploring the dynamic interactions between organisms (human and non-human) and their environment, revealed a driving force in both nature and technological innovation. By mapping the trends and influences of socio-national dynamics and innovations, these complex relationships shape biodiversity, resilience of ecosystems and society.
Downloads
References
AHMED K. Brain-Inspired Spiking Neural Networks [Internet]. Biomimetics. IntechOpen; 2021. Available from: http://dx.doi.org/10.5772/intechopen.93435
ANDREAZZI, C. S.; ASTEGIANO, J.; GUIMARÃES, P. R. Coevolution by different functional mechanisms modulates the structure and dynamics of antagonistic and mutualistic networks. Oikos, v. 129, n. 2, p. 224–237, 1 fev. 2020. DOI: 10.1086/692110
ANDREAZZI, C. S.; THOMPSON, J. N.; GUIMARÃES, P. R. Network structure and selection asymmetry drive coevolution in species-rich antagonistic interactions. American Naturalist, v. 190, n. 1, p. 99–115, 2017. DOI: 10.1086/692110
BURGER, N.; FRANCOIS, V.; NICOLIS, V. F.; BOTHA, A. Host-specific co-evolution likely driven by diet in Buchnera aphidicola. BMC genomics, v. 25, n. 1, p. 153, 2024.
CASE, T. J. et al. The community context of species’ borders: Ecological and evolutionary perspectives. Oikos, jan. 2005. DOI: 10.1111/j.0030-1299.2005.13148.x
CRUMIÈRE, A. J. J. et al. Escalation and morphological constraints of antagonistic armaments in water striders. Frontiers in Ecology and Evolution, v. 7, n. jun, 2019. DOI: 10.3389/fevo.2019.00215
DCR - Virginia Department of Conservation and Recreation. Native and Non-native Invasive Plants.https://www.dcr.virginia.gov/natural-heritage/native-vs-aliens, 2024.
DE CASTRO, É. C. P. et al. The arms race between heliconiine butterflies and Passiflora plants – new insights on an ancient subject. Biological Reviews, v. 93, n. 1, p. 555–573, 1 fev. 2018. DOI: 10.1086/692110
DECAESTECKER, E. et al. Host-parasite “Red Queen” dynamics archived in pond sediment. Nature, v. 450, n. 7171, p. 870–873, 6 dez. 2007. DOI: 10.1038/nature06291
DINIZ, M. C., MARTINS, M. G., XAVIER, K. V. M., SILVA, M. A. A. DA, & SANTOS, E. DE A.Crise Global Coronavírus: monitoramento e impactos. Cadernos de Prospecção, 13(2), 359. 2020. https://doi.org/10.9771/cp.v13i2.35937
DIXIT, T. A synthesis of coevolution across levels of biological organization. Evolution, v. 78, n. 2, p. 211-220, 1 fev. 2024. DOI: 10.1093/evolut/qpad082
DODDS, P. N. et al. Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. PNAS, v. 103, n. 23, p. 8888-8893, jun. 2006. DOI: 10.1073/pnas.0602577103
É, G. DO N. , PEDUTI, G. P., CARVALHO, A. M. L. DE, RABELO, A. DOS S., & DINIZ, M. C. Bioimpressão 3D de Tecidos e Órgãos: uma prospecção tecnológica. Cadernos de Prospecção, 13(5), 1383. 2020. https://doi.org/10.9771/cp.v13i5.33571
EBERT, D. Host-parasite coevolution: Insights from the Daphnia-parasite model system. Current Opinion in Microbiology, v. 11, p. 290-301, jun. 2008. DOI: 10.1016/j.mib.2008.05.012
ERNST, M. et al. Assessing specialized metabolite diversity in the cosmopolitan plant genus Euphorbia l. Frontiers in Plant Science, v. 10, 31 maio 2019. DOI: 10.3389/fpls.2019.00846
FEENEY, W. E.; WELBERGEN, J. A.; LANGMORE, N. E. Advances in the study of coevolution between avian brood parasites and their hosts. Annual Review of Ecology, Evolution, and Systematics, v. 45, p. 227–246, 23 nov. 2014. DOI: 10.1146/annurev-ecolsys-120213-091603
FORTUNA, M. A. et al. Coevolutionary dynamics shape the structure of bacteria-phage infection networks. Evolution, v. 73, n. 5, p. 1001–1011, 1 maio 2019. DOI: 10.1111/evo.13731
GALLAGHER, J.E., OUGHTON, E.J. Assessing thermal imagery integration into object detection methods on air-based collection platforms. Sci Rep 13, 8491 (2023). https://doi.org/10.1038/s41598-023-34791-8
GOSTINSKI, L. F., COSTA, H. D., FIRMO, W. DA C. A., MENDES, H. B. R., CRUZ, G. B. V., & ALBUQUERQUE, P. M. C. DE. PROSPECÇÃO TECNOLÓGICA: O USO DE DISPOSITIVOS DE GEORREFERENCIAMENTO PARA ANÁLISE DA DISTRIBUIÇÃO E COMPORTAMENTO DE ABELHAS SOCIAIS. Cadernos de Prospecção, 9(1), 63.2016 https://doi.org/10.9771/s.cprosp.2016.009.008
GÓMEZ, P.; BUCKLING, A. Bacteria-Phage Antagonistic Coevolution in Soil. Science, v. 332, n. 6025, p. 106-109, abr 2011. DOI: 10.1126/science.1198767
GRIM, Tomáš. Perspectives and debates: Mimicry, signalling and co‐evolution (Commentary on Wolfgang Wickler–Understanding Mimicry–With special reference to vocal mimicry). Ethology, v. 119, n. 4, p. 270-277, 2013.
HARMON, L. J. et al. Detecting the macroevolutionary signal of species interactions. Journal of Evolutionary Biology, v. 32, p. 769-782, abr 2019. DOI: 10.1111/jeb.13477
HUANG, Jin-Nan et al. Salticid predation as one potential driving force of ant mimicry in jumping spiders. Proceedings of the Royal Society B: Biological Sciences, v. 278, n. 1710, p. 1356-1364, 2011.
JAMIE, G.A. Signals, cues and the nature of mimicry. Proceedings of the Royal Society B: Biological Sciences, v. 284, n. 1849, p. 20162080, 2017.
JOKELA, J.; DYBDAHL, M. F.; LIVELY, C. M. The maintenance of sex, clonal dynamics, and host-parasite coevolution in a mixed population of sexual and asexual snails. American Naturalist, v. 174, n. SUPPL. 1, jul. 2009. DOI: 10.1086/599080
KOSKELLA, B.; LIVELY, C. M. Advice of the rose: Experimental coevolution of a trematode parasite and its snail host. Evolution, v. 61, n. 1, p. 152–159, jan. 2007. DOI: 10.1111/j.1558-5646.2007.00012.x
LIVELY, C. M. Parasite virulence, host life history, and the costs and benefits of sex. Ecology, v. 91, n. 1, p. 3–6, jan. 2010. DOI: 10.1890/09-1158.1
LU, H. L.; ST. LEGER, R. J. Insect Immunity to Entomopathogenic Fungi. Advances in Genetics, v. 94, p. 251–285, 2016. DOI: 10.1016/bs.adgen.2015.11.002
MARK, C. J., O'HANLON, J.C., HOLWELL, G.I. Camouflage in lichen moths: Field predation experiments and avian vision modelling demonstrate the importance of wing pattern elements and background for survival. Journal of Animal Ecology, v. 91, n. 12, p. 2358-2369, 2022.
MARTÍN, A.A., et al. Google Scholar, Web of Science, and Scopus: a systematic comparison of citations in 252 subject categories. Journal of Informetrics [online]. 2018, vol. 12, no. 4, pp. 1160-1177 [viewed 27 November 2019]. DOI: 10.1016/J.JOI.2018.09.002. Available from: https://www.sciencedirect.com/science/article/abs/pii/S1751157718303249
MITHÖFER, A.; BOLAND, W. Plant defense against herbivores: Chemical aspects. Annual Review of Plant Biology, v. 63, p. 431-450, jun. 2012. DOI: 10.1146/annurev-arplant-042110-103854
MOREIRA, P. S. C.; GUIMARÃES, A. J. R.; TSUNODA, D. F. Qual ferramenta bibliométrica escolher? um estudo comparativo entre softwares. P2P e Inovação, v. 6, p. 140-158, 2020.
MORANEUS. Evolution: Not Just a Theory, But a Problem-Solving Tool. https://medium.com/@moraneus/evolution-not-just-a-theory-but-a-problem-solving-tool-0e5884f68bd8, 2024.
NAIR, R. et al. A coevolução bacteriana predador-presa acelera a evolução do genoma e seleciona as defesas das presas associadas à virulência. Comunicações da natureza , v. 10, n. 1, pág. 4301, 2019.
NUISMER, S. L.; HARMON, L. J. Predicting rates of interspecific interaction from phylogenetic trees. Ecology Letters, v. 18, n. 1, p. 17–27, 1 jan. 2015. DOI: 10.1111/ele.12384
NUISMER, S. L.; WEEK, B. Approximate Bayesian estimation of coevolutionary arms races. PLoS Computational Biology, v. 15, n. 4, 2019. DOI: 10.1371/journal.pcbi.1006988
OLLERTON, J. et al. The diversity and evolution of pollination systems in large plant clades: Apocynaceae as a case study. Annals of Botany, v. 123, n. 2, p. 311-325, 2019.
OTTE, P.J. et al. Snow cover‐related camouflage mismatch increases detection by predators. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 2024.
PARKER, G. A. Sexual conflict over mating and fertilization: An overview. Philosophical Transactions of the Royal Society B, v. 361, p. 235-259, jan. 2006. DOI: 10.1098/rstb.2005.1785
PATERSON, S. et al. Antagonistic coevolution accelerates molecular evolution. Nature, v. 464, n. 7286, p. 275–278, 11 mar. 2010. DOI: 10.1038/nature08798
PEMBURY S et al. Camouflage in predators. Biological Reviews, v. 95, n. 5, p. 1325-1340, 2020.
PIRES, E. A., FERREIRA, M. A., VIEIRA, R. B., BARBOSA, C. A., & SANTOS, F. L. PERFIL DOS DOCUMENTOS DE PATENTE REFERENTES A TECNOLOGIAS E PRODUTOS PROBIÓTICOS, PREBIÓTICOS E SIMBIÓTICOS NA AMÉRICA LATINA. Cadernos de Prospecção, 8(1), 142. 2015. https://doi.org/10.9771/s.cprosp.2015.001.016
REYNOLDS, C. Coevolution of Camouflage. In: Artificial Life Conference Proceedings 35. One Rogers Street, Cambridge, MA 02142-1209, USA journals-info@ mit. edu: MIT Press, 2023. p. 11.
RODGER, J. G. et al. Widespread vulnerability of flowering plant seed production to pollinator declines. Science advances, v. 7, n. 42, p. eabd3524, 2021.
SALAZAR, D. et al. Origin and maintenance of chemical diversity in a species-rich tropical tree lineage. Nature Ecology and Evolution, v. 2, n. 6, p. 983–990, 1 jun. 2018. DOI: 10.1038/s41559-018-0552-0
SANTOS, S. C. DOS, CASTRO, D. C. M. DE, ASSUNÇÃO, P. S. DE, SANTOS, T. L. DOS, & QUINTELLA, C. M. Mapeamento Tecnológico de Processos Microbianos Aplicados na Biorremediação de Metais Pesados. Cadernos de Prospecção, 11(5), 1740. 2018. https://doi.org/10.9771/cp.v11i5.25240
SANTOS, A. F. DE J., & HANNA, S. A. PROSPECÇÃO TECNOLÓGICA DE PATENTES NA PRODUÇÃO DE BIOINOCULANTES E BIOFERTILIZANTES. Cadernos de Prospecção, 10(2), 300. 2017 https://doi.org/10.9771/cp.v10i2.20719
SAUQUET, H.; MAGALLÓN, S. Key questions and challenges in angiosperm macroevolution. New Phytologist, v. 219, n. 4, p. 1170-1187, 2018.
SCHENK, H. J. Root competition: Beyond resource depletion. Journal of Ecology, jul. 2006. DOI: 10.1111/j.1365-2745.2006.01124.x
SHERRATT, T.N. The evolution of Müllerian mimicry. Naturwissenschaften, v. 95, n. 8, p. 681-695, 2008.
SIEDENTOP, B. et al. My host’s enemy is my enemy: plasmids carrying CRISPR-Cas as a defence against phages. Proceedings of the Royal Society B: Biological Sciences, v. 291, n. 2015, 24 jan. 2024. DOI: 10.1098/rspb.2023.2449
STEPHENS, R. E.; GALLAGHER, R. V.; DUN, L.; CORNWELL, W.; SAUQUET, H. Insect pollination for most of angiosperm evolutionary history. New Phytologist, v. 240, n. 2, p. 880-891, 2023.
USAMENTIAGA R, VENEGAS P, GUEREDIAGA J, VEGA L, MOLLEDA J, BULNES F G. Infrared thermography for temperature measurement and non-destructive testing. Sensors (Basel). 2014 Jul 10;14(7):12305-48. doi: 10.3390/s140712305. PMID: 25014096; PMCID: PMC4168422.
VAN HOUTE, S. et al. The diversity-generating benefits of a prokaryotic adaptive immune system. Nature, v. 532, n. 7599, p. 385–388, 21 abr. 2016. DOI: 10.1038/nature17436
VAN HOUTE, S.; BUCKLING, A.; WESTRA, E. R. Evolutionary Ecology of Prokaryotic Immune Mechanisms. Microbiology and Molecular Biology Reviews, v. 80, n. 3, p. 745–763, set. 2016. DOI: 10.1128/mmbr.00011-16
VAN ECK N. J.; WALTMAN, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics, v84, n.2: 523–38, 2010.
WANG, A. Y. et al. The nature of interspecific interactions and co-diversification patterns, as illustrated by the fig microcosm. New Phytologist, v. 224, n. 3, p. 1304–1315, 1 nov. 2019. DOI: 10.1111/nph.16
WANG, X. et al. Phenotypic plasticity plays an essential role in the confrontation between plants and herbivorous insects. CABI Agriculture and Bioscience, v. 4, n. 58, p. 1-12, 1 dez. 2023. DOI: 10.1186/s43170-023-00201-2
YODER, J. B.; NUISMER, S. L. When does coevolution promote diversification? American Naturalist, v. 176, n. 6, p. 802–817, dez. 2010. DOI: 10.1086/657048
ZHOU P, CHEN C, PATIL S, DONG S. Unveiling the therapeutic symphony of probiotics, prebiotics, and postbiotics in gut-immune harmony. Front Nutr. 2024 Feb 8;11:1355542. doi: 10.3389/fnut.2024.1355542. PMID: 38389798; PMCID: PMC10881654.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Jonas Conduru Barros Neto, Geysa Oliveira Lima Machado, Thaís Correia Magalhães, Michely Correia Diniz

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The journal is published under the Creative Commons - Attribution - Noncommercial - Share Alike 3.0 Brazil.
The published work is considered collaboration and therefore the author will not receive any remuneration for this as well as anything will be charged in exchange for publication.
All texts are responsibility of the authors.
It’s allowed partial or total reproduction of the texts of the magazine since the source is cited.