O sentimento político em redes sociais: big data, algoritmos e as emoções nos tweets sobre o impeachment de Dilma Rousseff | Political sentiment in social networks: big data, algorithims and emotions in tweets about the impeachment of Dilma Rousseff

Autores

  • Fabio Malini Universidade Federal do Espírito Santo
  • Patrick Ciarelli Universidade Federal do Espírito Santo
  • Jean Medeiros Universidade Federal do Espírito Santo

DOI:

https://doi.org/10.18617/liinc.v13i2.4089

Resumo

Resumo Este artigo se propõe a ampliar a metodologia perspectivista (MALINI, 2016) de análise de redes sociais, incorporando um procedimento de análise dos sentimentos das mensagens postadas em redes de controvérsias políticas, em particular, em dois momentos distintos da campanha pelo impeachment da presidenta Dilma. O primeiro é o período da eclosão das manifestações antipetistas, no dia 15 de março de 2015. O segundo, dia 27 de agosto de 2016, quando a presidenta é deposta do cargo. Realiza uma revisão sobre a análise de sentimentos em megadados do Twitter e constrói uma metodologia que combina classificação humana de textos com aplicação de algoritmos genéticos de análise de textos, no intuito de analisar sentimentos genéricos (baseado na polarização positivo/negativos) e sentimento específicos, baseados nas seguintes emoções: Alegria, Raiva, Medo, Antecipação, Desgosto, Tristeza, Surpresa e Confiança. Conclui demonstrando que os movimentos pró e anti-Dilma são marcados pelo predomínio de sentimento de raiva, medo e ansiedade, confirmando a hipótese que a trolagem ofensiva demarca o estilo da indignação propagada em redes políticas no Twitter brasileiro.  

Palavras-Chave: Análise de Sentimento; Big Data; Redes; Política; Twitter.

Abstract This article aims to expand the perspectivist methodology (Malini, 2016) of social networks analysis, incorporating a proceeding of sentiment analysis of the messages posted in networks of political controversies, in particular, in two distinct moments of the campaign for the impeachment of President Dilma.
The first is the period of the outbreak of PT protests, on March 15, 2015. The second, on August 27, 2016, when the president is deposed. We will be doing a theoretical review about sentiment analysis in Big Data on Twitter to build a methodology that combines human classification of texts with the application of genetic algorithms of text analysis and to analyze generic sentiments (based on positive / negative polarization) and specific sentiment, based on emotions like Joy, Anger, Fear, Anticipation, Disgust, Sadness, Surprise and Trust. It concludes by demonstrating that pro and anti-Dilma movements are marked by a predominance of anger, fear and anxiety, confirming the hypothesis that an offensive trolling demarcates the style of indignation propagated by political networks in Brazilian Twitter.

Keywords: Sentiment Analysis; Big Data; Social Network; Politics; Twitter.

 

Biografia do Autor

  • Fabio Malini, Universidade Federal do Espírito Santo
    Fabio Malini é professor adjunto no Departamento de Comunicação da Universidade Federal do Espírito Santo.
  • Patrick Ciarelli, Universidade Federal do Espírito Santo
    Doutor em Engenharia Elétrica e Professor Adjunto da Universidade Federal do Espírito Santo.
  • Jean Medeiros, Universidade Federal do Espírito Santo

    Doutorando em Política Científica e Tecnológica, Unicamp. Pesquisador Associado do Laboratório de estudos sobre Imagem e Cibercultura (LABIC/UFES).

Downloads

Publicado

01/12/2017

Edição

Seção

Desinformação e hiperinformação nas redes digitais contemporâneas

Como Citar

O sentimento político em redes sociais: big data, algoritmos e as emoções nos tweets sobre o impeachment de Dilma Rousseff | Political sentiment in social networks: big data, algorithims and emotions in tweets about the impeachment of Dilma Rousseff. Liinc em Revista, [S. l.], v. 13, n. 2, 2017. DOI: 10.18617/liinc.v13i2.4089. Disponível em: https://revista.ibict.br/liinc/article/view/4089. Acesso em: 4 nov. 2024.