O sentimento político em redes sociais: big data, algoritmos e as emoções nos tweets sobre o impeachment de Dilma Rousseff | Political sentiment in social networks: big data, algorithims and emotions in tweets about the impeachment of Dilma Rousseff
DOI:
https://doi.org/10.18617/liinc.v13i2.4089Resumo
Resumo Este artigo se propõe a ampliar a metodologia perspectivista (MALINI, 2016) de análise de redes sociais, incorporando um procedimento de análise dos sentimentos das mensagens postadas em redes de controvérsias políticas, em particular, em dois momentos distintos da campanha pelo impeachment da presidenta Dilma. O primeiro é o período da eclosão das manifestações antipetistas, no dia 15 de março de 2015. O segundo, dia 27 de agosto de 2016, quando a presidenta é deposta do cargo. Realiza uma revisão sobre a análise de sentimentos em megadados do Twitter e constrói uma metodologia que combina classificação humana de textos com aplicação de algoritmos genéticos de análise de textos, no intuito de analisar sentimentos genéricos (baseado na polarização positivo/negativos) e sentimento específicos, baseados nas seguintes emoções: Alegria, Raiva, Medo, Antecipação, Desgosto, Tristeza, Surpresa e Confiança. Conclui demonstrando que os movimentos pró e anti-Dilma são marcados pelo predomínio de sentimento de raiva, medo e ansiedade, confirmando a hipótese que a trolagem ofensiva demarca o estilo da indignação propagada em redes políticas no Twitter brasileiro.
Palavras-Chave: Análise de Sentimento; Big Data; Redes; Política; Twitter.
Abstract This article aims to expand the perspectivist methodology (Malini, 2016) of social networks analysis, incorporating a proceeding of sentiment analysis of the messages posted in networks of political controversies, in particular, in two distinct moments of the campaign for the impeachment of President Dilma.
The first is the period of the outbreak of PT protests, on March 15, 2015. The second, on August 27, 2016, when the president is deposed. We will be doing a theoretical review about sentiment analysis in Big Data on Twitter to build a methodology that combines human classification of texts with the application of genetic algorithms of text analysis and to analyze generic sentiments (based on positive / negative polarization) and specific sentiment, based on emotions like Joy, Anger, Fear, Anticipation, Disgust, Sadness, Surprise and Trust. It concludes by demonstrating that pro and anti-Dilma movements are marked by a predominance of anger, fear and anxiety, confirming the hypothesis that an offensive trolling demarcates the style of indignation propagated by political networks in Brazilian Twitter.
Keywords: Sentiment Analysis; Big Data; Social Network; Politics; Twitter.
Downloads
Publicado
Edição
Seção
Licença
Autores que publicam na Liinc em Revista concordam com os seguintes termos:
Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Atribuição 4.0 Internacional, que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
Consulte a Política de Acesso Livre e Autoarquivamento para informações permissão de depósitos de versões pré-print de manuscritos e artigos submetidos ou publicados à/pela Liinc em Revista.
Liinc em Revista, publicada pelo Instituto Brasileiro de Informação em Ciência e Tecnologia, é licenciada sob os termos da Licença Creative Commons Atribuição 4.0 Internacional – CC BY 4.0