Copyright and data and text mining in the fight against Covid-19 in Brazil
DOI:
https://doi.org/10.18617/liinc.v16i2.5536Keywords:
Copyright, Database, Limitations and Exceptions, Data and text Mining, COVID-19Abstract
The explosion of the COVID-19 pandemic has intensified the importance of text and data mining techniques and tools (TDM), which serve as basis for several applications involved in the combat against the SARS-CoV-2 virus, from the monitoring of medical cases and disease expansion to vaccine development. Under this scenario, we ask how the pandemic highlights the importance of TDM tools and the effects of the current copyright protection system on databases for the development of such technologies, which depends heavily on the access and open circulation of information. To this end, we make use of bibliographic and documental research, centered on the cases of the COVID-19 observatory at Johns Hopkins University, the NextStrain project, and artificial intelligence systems. Firstly, we conceptualize data and text mining technologies, databases and machine learning, their applications and importance for scientific and technological innovation. Next, we discuss the role of copyright on databases and the barriers it imposes for the development of research and data-intensive technologies. We conclude that the current protection of databases by copyright creates obstacles to data access and use for research purposes, and that the promotion of limitations and exceptions, especially for data and text mining and for research purposes, is crucial for scientific development and technological innovation and, more specifically, for the success of the fight against this and other pandemics
References
ABHARI, Reza S.; MARINI, Marcello; CHOKANI, Ndaona. COVID-19 Epidemic in Switzerland: Growth Prediction and Containment Strategy Using Artificial Intelligence and Big Data. medRxiv. 2020. Disponível em: https://doi.org/10.1101/2020.03.30.20047472
ALVARENGA, Miguel Bastos. Mineração de dados, Big Data e Direitos Autorais no Brasil. 2019. Dissertação (Mestrado em Políticas Públicas, Estratégias e Desenvolvimento). Instituto de Economia. Universidade Federal do Rio de Janeiro (UFRJ). Rio de Janeiro, 2019.
ARANTES, J. T. Artificial intelligence to track news of COVID-19. Agência FAPESP, 20 mai. 2020. Disponível em: https://agencia.fapesp.br/artificial-intelligence-to-track-news-of-covid-19/33174/. Acesso em 23 ago. 2020.
BANTERLE, F. Data ownership in the data economy: a European dilemma. EU Internet Law in the digital era (edited volume based on the REDA 2017 conference). Springer, 2018 (no prelo). Disponível em: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3277330. Acesso em 16 jun. 2020.
BATISTA, Andre Filipe de Moraes; MIRAGLIA, Joao Luiz Miraglia; DONATO, Thiago Henrique Rizzi; FILHO, Alexandre Dias Porto Chiavegatto. COVID-19 diagnosis prediction in emergency care patients: a machine learning approach. medRxiv. 2020. Disponível em: https://doi.org/10.1101/2020.04.04.20052092
BRANCO, S. V. O Domínio Público no Direito Autoral Brasileiro – Uma Obra em Domínio Público. Rio de Janeiro: Lumen Juris, 2011.
BRASIL. Conselho da Justiça Federal. III Jornada de Direito Comercial: Enunciados aprovados em 7/6/2019. 2019. Disponível em: https://www.cjf.jus.br/cjf/noticias/2019/06-junho/iii-jornada-de-direito-comercial-e-encerrada-no-cjf-com-aprovacao-de-enunciados/copy_of_EnunciadosaprovadosIIIJDCREVISADOS004.pdf. Acesso em 17 ago. 2020.
BRASIL. Lei nº 9.610, de 19 de fevereiro de 1998. Altera, atualiza e consolida a legislação sobre direitos autorais e dá outras providências. 1998b. Disponível em: http://www.planalto.gov.br/ccivil_03/leis/l9610.htm. Acesso em 16 jun. 2020.
BRASIL. Ministério da Saúde. Sequenciamento do coronavírus possibilita o desenvolvimento de vacinas. Blog da Saúde, 16 mar. 2020. Disponível em: http://www.blog.saude.gov.br/index.php/perguntas-e-respostas/54104-confira-a-entrevista-sobre-o-sequenciamento-do-coronavirus. Acesso em 06 ago. 2020.
BRASIL. Superior Tribunal de Justiça. 3ª Turma. Recurso Especial nº 964404/ES (2007/0144450-5). Recorrente: Mitra Arquidiocesana de Vitória. Recorrido: Escritório Central de Arrecadação e Distribuição (ECAD). Relator: Min. Paulo de Tarso Sanseverino. Brasília, 15 de março de 2011. Lex: Diário de Justiça Eletrônico, Brasília, v. 815, 23 mai. 2011.
BROWN, K. Digital Rights Management: Trafficking in Technology That Can Be Used to Circumvent the Intellectual Property Clause. 40 Houston Law Review, vol. 803, 2003, p. 803-836.
CASTELLS, Manuel. A era da informação: economia, sociedade e cultura. Vol. 1: Sociedade em rede. São Paulo: Paz e Terra, 1999.
CHEN, H; CHIANG, R. H. L.; STOREY, V. C. Business Intelligence and Analytics: from Big Data to Big Impact. MIS Quarterly: Management Information Systems, vol. 36 (4), pp. 1165-1188, dez. 2012.
DEAN, J. Big Data, Data Mining, and Machine Learning: Value Creation for Business Leaders and Practitioners. Wiley, 2014. ProQuest Ebook Central. Disponível em: http://ebookcentral.proquest.com/lib/oxford/detail.action?docID=1687540. Acesso em 16 jun. 2020.
DERCLAYE, E. The Legal Protection of Databases: A Comparative Analysis. Edward Elgar, 2008.
DONG E.; DU H.; GARDNER L. An interactive web-based dashboard to track COVID-19 in real time. The Lancet Infectious Diseases, vol. 20 (5): 533-534. Disponível em: https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(20)30120-1/fulltext. Acesso em 23 ago. 2020.
DREXL, Josef; HILTY, Reto M.; BENEKE, Francisco; DESAUNETTES, Luc; FINCK, Michèle; GLOBOCNIK, Jure; OTERO, Begoña Gonzalez; HOFFMANN, Jörg; HOLLANDER, Leonard; KIM, Daria; RICHTER, Heiko; SCHEUERER, Stefan; SLOWINSKI, Peter R.; THONEMANN, Jannick. Technical Aspects of Artificial Intelligence: An Understanding from an Intellectual Property Law Perspective. Max Planck Institute for Innovation and Competition Research Paper Series – Research Paper No. 19-13. Research Group on the Regulation of the Digital Economy. October, 2019. Disponível em: https://ssrn.com/abstract=3465577.
FUNDAÇÃO OSWALDO CRUZ. Observatório COVID-19: Informação para ação. 2020. Disponível em: https://portal.fiocruz.br/observatorio-covid-19. Acesso em 19 de jul de 2020, às 11:51.
GEIGER, C.; FROSIO, G.; BULAYENKO, O. The Exception for Text and Data Mining (TDM) in the Proposed Directive on Copyright in the Digital Single Market - Legal Aspects. Centre for International Intellectual Property Studies (CEIPI) Research Paper No. 2018-02, 2018. Disponível em: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3160586. Acesso em 16 jun. 2020.
GREGORY, M. AI Trained on Old Scientific Papers Makes Discoveries Humans Missed. Vice, 9 jul. 2019. Disponível em: https://www.vice.com/en_us/article/neagpb/ai-trained-on-old-scientific-papers-makes-discoveries-humans-missed. Acesso em 17 jul. 2020.
HAN, J.; PEI, J.; KAMBER, M. Data mining: concepts and techniques. [S.l.] Elsevier, 2011.
HAYKIN, Simon. Redes neurais: princípios e práticas. Trad. Paulo Martins Engel. – 2.ed. – Porto Alegre: Bookman, 2001.
HO, Dean. Addressing COVID-19 Drug Development with Artificial Intelligence. Advanced Intelligent Systems. vol. 2. 5. 2020. Publicado por WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. Disponível em: https://onlinelibrary.wiley.com/doi/full/10.1002/aisy.202000070.
HUGENHOLTZ, P. B. Data property: Unwelcome Guest in the house of IP. In: REDA, J. (ed.). Better Regulation for Copyright: Academics meet Policy Makers. TheGreens/EFA, p. 65-77, 2017. Disponível em: https://juliareda.eu/wp-content/uploads/2017/09/2017-09-06_Better-Regulation-for-Copyright-Academics-meet-Policy-Makers_Proceedings.pdf. Acesso em 16 jun. 2020.
INSTITUTO NACIONAL DA PROPRIEDADE INDUSTRIAL (INPI). Observatório de Tecnologias Relacionadas ao Covid-19. Telemedicina e Inteligência Artificial. Disponível em: https://www.gov.br/inpi/pt-br/servicos/patentes/tecnologias-para-covid-19/Telemedicina
JOHN HOPKINS UNIVERSITY. Center for Systems Science and Engineering (CSSE). COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University. Disponível em: https://github.com/CSSEGISandData/COVID-19. Acesso em 23 ago. 2020.
KELLEHER, J. D.; TIERNEY, B. Data Science. Cambridge: MIT Press, 2018.
KROENKE, D. M. et al. Database Concepts. 8ª ed. Nova York: Pearson, 2016.
MARTENS, B. The importance of data access regimes for artificial intelligence and machine learning. JRC Technical Reports: JRC Digital Economy Working Paper 2018-09, dec. 2018.
NEXTSTRAIN. Nextstrain: analysis and visualization of pathogen sequence data. Disponível em: https://nextstrain.org/docs/getting-started/introduction. Acesso em 17 jul. 2020.
PINHEIRO, A. M.; TIGRE, P. B. (eds.). Inovação em serviços na economia do compartilhamento. Rio de Janeiro: Saraiva, 2019.
QUINTAIS, João Pedro. Rethinking Normal Exploitation: Enabling Online Limitations in EU Copyright Law. AMI : Tijdschrift voor Auteurs-, Media- & Informatierecht. 41 (6). 2017. Pp.197-205.
ROWLEY, J. The wisdom hierarchy: representations of the DIKW hierarchy. Journal of Information Science, vol. 33 (2), pp. 163, 2007.
RUSSEL, Stuart; NORVIG, Peter. Inteligência Artificial; tradução Regina Célia Simille- Rio de Janeiro: Elsevier: 2013. (Tradução de Artificial Intelligence, 3rd. ed.)
SAMUEL, A. L. Some Studies in Machine Learning Using the Game of Checkers. IBM Journal of Research and Development, vol. 3 (3), pp. 210–229, jul. 1959
SAUTOY, Marcus du. The creativity code: art and innovation in the Age of AI. The Belknap Press of Harvard University Press. Cambridge, Massachusetts. 2019.
SCHIRRU, Luca. Direito Autoral e Inteligência Artificial: Autoria e Titularidade em Produtos da IA. 2020. Tese (Doutorado em Políticas Públicas, Estratégias e Desenvolvimento). Instituto de Economia. Universidade Federal do Rio de Janeiro (UFRJ). Rio de Janeiro, 2020.
SCHMIDHUBER, J. Deep learning in neural networks: An overview. Review. Neural Networks, 61. 2015. Pp. 85–117.
SOUZA, Allan Rocha. A função social dos direitos autorais: uma leitura civil-constitucional das limitações aos direitos autorais. Rio de Janeiro: Editora da Faculdade de Direito de Campos, 2006.
STUCKE, M. E.; GRUNES, A. P. Debunking the Myths Over Big Data and Antitrust. In: CPI Antitrust Chronicle, 2, mai. 2015.
WANG, Shuai; KANG, Bo; MA, Jinlu; ZENG, Xianjun; XIAO, Mingming; GUO, Jia; CAI, Mengjiao; YANG, Jingyi; LI, Yaodong; MENG, Xiangfei; XU, Bo. A deep learning algorithm using CT images to screen for Corona Virus Disease (COVID-19). medRxiv. 2020. Disponível em: https://doi.org/10.1101/2020.02.14.20023028.
WEBSENSORS. Um poderoso framework de Inteligência Analítica. Disponível em: https://www.websensors.net.br/websensors/. Acesso em 23 ago. 2020.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant Liinc em Revista the right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License.
The authors have permission and are encouraged to deposit their manuscripts and versios of record (VoR) in their personal web pages or institutional repositories, generic repositories etc., before (pre-print) or after (post-print) the publication in Liinc em Revista, according to its open access depositing policy registered in the Directory of Editorial Policies of Brazilian Journals (DIADORIM), kindly providing a link to the article published on Liinc's website.
Liinc em Revista, published by Instituto Brasileiro de Informação em Ciência e Tecnologia, is licensed under a Creative Commons Attribution 4.0 International License – CC BY 4.0