Emotional AI and Deceptive Design: The Issue of Sovereignty for Subjectivity
DOI:
https://doi.org/10.18617/liinc.v20i2.7311Keywords:
Subject sovereignty, AI regulation, Emotion inference, Behavioral designAbstract
This article addresses the issue of digital sovereignty not only as a political and economic matter but also within the realm of the subject and subjectivity, or the human-machine relationship. We focus on two domains where the question of subject sovereignty is most explicitly raised: AI systems aimed at the automated inference of emotional and psychological characteristics, and the incorporation of dark design patterns inherited from behavioral economics in platform construction. In both cases, we analyze the implications for the question of subject sovereignty and the debate on AI regulation, guided by the central question: what kind of subject sovereignty could be proposed in AI platforms? We discuss how, in the attempt to impose barriers against manipulation or insidious influence on individuals and populations, regulatory frameworks risk asserting either a fully autonomous subject, free from influences, or a definitively vulnerable subject that needs protection. We point out that neither of these extremes holds up when it comes to understanding how subjectivities and psychological and emotional processes are engaged by AI platforms. Finally, we conclude that in the digital environments, platforms, and AI applications targeted in this article, subject or subjectivity sovereignty cannot be definitively ensured at the individual or legal level. Instead, it is a sociotechnical and technopolitical issue that must be continuously addressed and revised collectively.
References
ADA LOVELACE INSTITUTE, 2019. Beyond face value: public attitudes to facial recognition technology. Ada Lovelace Institute. [Acesso em 16 março 2024]. Disponível em: https://www.adalovelaceinstitute.org/report/beyond-face-value-public-attitudes-to-facial-recognition-technology/
AI NOW INSTITUTE, 2019. AI in 2019: A Year in Review. AI Now Institute, 2019. [Acesso em: 16 mar. 2024]. Disponível em: https://ainowinstitute.org/news/ai-in-2019-a-year-in-review
ALLEN, Seamus, 2021. European Sovereignty In: The Digital Age. Europe’s Digital Future. [Acesso em 29 setembro 2024]. Disponível em: https://www.iiea.com/publications/european-sovereignty-in-the-digital-age
AMADEU, Sérgio, 2023. Inteligência local, soberania digital e soberania de dados. In: PENTEADO, C. C; PELLEGRINI, J. C.; SILVEIRA, Sérgio Amadeu (Orgs.) Plataformização, inteligẽncia artificial e soberania de dados. 1. ed. São Paulo: Ação Educativa, v. 1. 198p .
ARIELY, Dan, 2006. Predictably irrational: The hidden forces that shape our decisions. New York, NY: HarperCollins Publishers.
BARBOSA, Alexandre, 2022. A soberania digital sustentável como base para o futuro da Internet. Comciência. 2022. [Acesso em 29 setembro 2024]. Disponível em: https://www.comciencia.br/a-soberania-digital-sustentavel-como-base-para-o-futuro-da-internet
BENTES, Anna, 2022. Da Madison Avenue ao Vale do Silício: ciências comportamentais do engajamento, tecnologias de influência e economia da atenção. 2022. Tese (Doutorado em em Comunicação e Cultura) – Escola de Comunicação, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ.
BIRHANE, Abeba, 2021. Algorithmic injustice: a relational ethics approach. Patterns. 2021. v. 2, n. 2, p. 100205–100205. [Acesso em 28 fevereiro 2024]. Disponível em: https://www.sciencedirect.com/science/article/pii/S2666389921000155
BRIGNULL, Harry, 2010. Dark Patterns: dirty tricks designers use to make people do stuff. 90 Percent Of Everything, 8 jul. 2010. [Acesso em: 6 maio 2024]. Disponível em: https://90percentofeverything.com/2010/07/08/dark-patterns-dirty-tricks-designers-use-to-make-people-do-stuff/index.html
BRUNO, Fernanda, 2018. A economia psíquica dos algoritmos: quando o laboratório é mundo. Nexo jornal, 12 de junho de 2018. [Acesso em 19 fevereiro 2024]. Disponível em: https://www.nexojornal.com.br/a-economia-psiquica-dos-algoritmos-quando-o-laboratorio-e-o-mundo
BRUNO, Fernanda; BENTES, Anna; FALTAY, Paulo, 2019. Economia psíquica dos algoritmos e laboratório de plataforma: mercado, ciência e modulação do comportamento. Revista FAMECOS. 2019. v. 26, n. 3. [Acesso em 19 fev 2024]. Disponível em: https://revistaseletronicas.pucrs.br/ojs/index.php/revistafamecos/article/view/33095
BRUNO, Fernanda, 2022. Racionalidade algorítmica & subjetividade maquínica. IN: SANTAELLA, Lucia (Org.). Simbioses do Humano e Tecnologias: Impasses, Dilemas, Desafios. São Paulo, SP: Editora da Universidade de São Paulo/IEA-USP.
BROWNE, Simone, 2010. Digital Epidermalization: Race, Identity and Biometrics. Critical Sociology. 2010. v. 36, n. 1, 131–150. [Acesso em 1 maio 2024]. Disponível em: doi:10.1177/0896920509347144
BUCHER, Taina, 2018. If… Then: Algorithmic power and politics. Oxford, England: Oxford University Press.
CARDON, Dominique; JEAN-PHILIPPE COINTET; MAZIÈRES, Antoine; et al, 2018. Neurons spike back. Reseaux. 2018. v. 211, n. 5, p. 173–220. [Acesso em 6 maio 2024]. Disponível em: https://www.cairn-int.info/abstract-E_RES_211_0173--neurons-spike-back.htm
COALIZÃO DIREITOS NA REDE, 2023. Projeto de lei nº 2338/2023 - Nota técnica. Agosto de 2023. [Acesso em: 5 mai. 2024]. Disponível em: https://direitosnarede.org.br/2023/08/23/coalizao-direitos-na-rede-divulga-nota-tecnica-sobre-o-pl-2338-2023-que-busca-regular-a-ia/
CRAWFORD, Kate, 2021. Atlas of AI: Power, Politics, and the Planetary Costs of Artificial Intelligence. New Haven: Yale University Press.
D’ALMONTE, E. F., & SANTOS, A, 2024. O. Regulamentação das plataformas digitais: entre a soberania digital e o transnacionalismo. E-Compós. 2024, ahead of print. [Acesso em 1 out. 2024]. Disponível em: https://www.e-compos.org.br/e-compos/article/view/2876
EKMAN, Paul; FRIESEN, Wallace V, 1971. Constants across cultures in the face and emotion. Journal of Personality and Social Psychology. 1971. v. 17, n. 2, 124–129. [Acesso em 1 maio 2024]. Disponível em: https://doi.org/10.1037/h0030377
EUROPEAN PARLIAMENT, 2024. Artificial Intelligence Act. 13 mar. 2024. [Acesso em 24 abril 2024]. Disponível em: https://www.europarl.europa.eu/doceo/document/TA-9-2024-0138_EN.pdf.
FALTAY, Paulo, 2020. Máquinas paranoides e sujeito influenciável: conspiração, conhecimento e subjetividade em redes algorítmicas. Tese (Doutorado em Comunicação e Cultura) – Escola de Comunicação, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ.
FREUD, Sigmund, 2010. Uma dificuldade da psicanálise (1917). Em: História de uma neurose infantil ("o homem dos lobos"), além do princípio do prazer e outros textos. São Paulo, SP: Companhia das Letras.
GAGO, Veronica; MEZZADRA, Sandro, 2017. A Critique of the Extractive Operations of Capital: Toward an Expanded Concept of Extractivism. Rethinking Marxism. 2017. v.4, n. 29, p 574-591. [Acesso em 1 maio 2024]. Disponível em: https://doi.org/10.1080/08935696.2017.1417087
GILLESPIE, Tarleton, 2014. The relevance of algorithms. In T. Gillespie, P. Boczkowski, & K. Foot (Eds.), Media technologies: Essays on communication, materiality, and society (pp. 167–194). MIT Press.
GROSMAN, Jéremy; REIGELUTH, Tyler. Perspectives on algorithmic normativities: engineers, objects, activities. Big Data & Society, n. 6, v. 2, 2019. https://doi.org/10.1177/20539517198587
GUATTARI, Félix, 1988. O inconsciente maquínico: ensaios de esquizo-análise. Tradução: Constança Marcondes César e Lucy Moreira César. Campinas: Editora Papirus.
______, 1992. Caosmose: um novo paradigma estético. Tradução: Ana Lúcia de Oliveira e Lúcia Cláudia Leão. São Paulo: Ed. 34.
HALL, Erika, 2013. Just Enough Research. New York: A Book Apart.
HELMOND, Anne, 2015. The Platformization of the Web: Making Web Data Platform Ready. Social Media + Society. 2015. v. 1, n. 2. [Acesso em 6 maio 2024]. Disponível em: https://journals.sagepub.com/doi/10.1177/2056305115603080
KAHNEMAN, Daniel, 2012. Rápido e Devagar: Duas Formas de Pensar. Rio de Janeiro, RJ: Editora Objetiva.
KRIZHEVSKY, Alex; SUTSKEVER, Ilya ; HINTON, Geoffrey E, 2012. ImageNet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems (NIIPS, Lake Tahoe), 2012. [Acesso em 15 abr. 2024]. Disponível em: https://papers.nips.cc/paper_files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
LEISER, Mark, 2024. Psychological Patterns and Article 5 of the AI Act: AI-Powered Deceptive Design in the System Architecture and the User Interface. Journal of AI law and Regulation. 2024. v.1, n.1, p. 5-23. [Acesso em 20 abril 2024]. Disponível em: https://research.vu.nl/en/publications/psychological-patterns-and-article-5-of-the-ai-act-ai-powered-dec
LYON, David, 2001. Under My Skin: From Identification Papers to Body Surveillance. J. Caplan and J. Torpey (eds) Documenting Individual Identity: The Development of State Practices in the Modern World, pp. 291–310. Princeton University Press: Princeton, NJ.
MCNEE, Sean M; RIEDL, John ; KONSTAN, Joseph A, 2006. Being accurate is not enough: How accuracy metrics have hurt recommender systems. Proceedings of the 2006 Conference on Human Factors in Computing Systems, Montréal, Québec, Canada, April 22-27, 2006. [Acesso em 06 maio 2024]. Disponível em: https://dl.acm.org/doi/10.1145/1125451.1125659
MCSTAY, Andrew, 2018. Emotional AI: The rise of empathic media. London: SAGE Publications Ltd.
MCSTAY, Andrew; PAVLISCAK, P, 2019. Emotional Artificial Intelligence: Guidelies for Ethical Use. [Acesso em 1 maio 2024]. Disponível em: https://drive.google.com/file/d/1frAGcvCY_v25V8ylqgPF2brTK9UVj_5Z/view
NADLER, Anthony; MCGUIAN, Lee, 2017. An impulse to exploit: the behavioral turn in data-driven marketing. Critical Studies in Media Communication. 2017. v. 35, n. 2, pp. 151–165. [Acesso em 6 maio 2024]. Disponível em: https://doi.org/10.1080/15295036.2017.1387279
OARD, Douglas W; KIM, Jinmook, 1998. Implicit Feedback for Recommender Systems. Scholar Commons. 1998. [Acesso em 6 maio 2024]. Disponível em: https://scholarcommons.sc.edu/libsci_facpub/111/
RICAURTE, Paola, 2022. Ethics for the majority world: AI and the question of violence at scale. Media, Culture & Society. 2022. v. 44, n. 4. [Acesso em 22 abril 2024]. Disponível em: https://journals.sagepub.com/doi/full/10.1177/01634437221099612
RHUE, Lauren, 2018. Racial Influence on Automated Perceptions of Emotions. Social Science Research Network, 2018 [Acesso em 1 maio 2024]. Disponível em: http://dx.doi.org/10.2139/ssrn.3281765
SEAVER, Nick, 2018. Captivating algorithms: Recommender systems as traps. Journal of Material Culture. 2018. v. 24, n. 4, p. 421–436. [Acesso em 25 outubro 2021]. Disponível em: https://journals.sagepub.com/doi/abs/10.1177/1359183518820366
SHIELDS, Stephanie, 2002. Speaking from the heart: Gender and the social meaning of emotion. Cambridge University Press, 2002.
STARK, Luke, 2018. Algorithmic Psychometrics and the Scalable Subject. Social Studies of Science. 2018. v. 48, n. 2, p. 204-231. [Acesso em 1 maio 2024]. Disponível em: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3154778
TURING, Alan, 1950. Computing Machinery and Intelligence. Mind, New Series. 1950. Vol. 59, No. 236. p. 433-460.
ZUBOFF, Shoshana, 2021. A era do capitalismo de vigilância: a luta por um futuro humano na nova fronteira do poder. Rio de Janeiro, RJ: Intrínseca.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Fernanda Glória Bruno, Paulo Faltay, Alice Lerner Garcia, Helena Strecker Gomes Carvalho

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant Liinc em Revista the right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License.
The authors have permission and are encouraged to deposit their manuscripts and versios of record (VoR) in their personal web pages or institutional repositories, generic repositories etc., before (pre-print) or after (post-print) the publication in Liinc em Revista, according to its open access depositing policy registered in the Directory of Editorial Policies of Brazilian Journals (DIADORIM), kindly providing a link to the article published on Liinc's website.
Liinc em Revista, published by Instituto Brasileiro de Informação em Ciência e Tecnologia, is licensed under a Creative Commons Attribution 4.0 International License – CC BY 4.0