The end of theory

the confrontation between data-driven research and hypothesis-driven resea rch

Authors

  • Luís Fernando Sayão Comissão Nacional de Energia Nuclear. Botafogo, Rio de Janeiro, Brasil.
  • Luana Farias Sales Instituto Brasileiro de Informação em Ciência e Tecnologia (IBICT). Rio de Janeiro, RJ, Brasil. https://orcid.org/0000-0002-3614-2356

DOI:

https://doi.org/10.18617/liinc.v15i1.4688

Keywords:

Big Data, Scientific Method, Data-Driven Science, Hypothesis-Driven Science

Abstract

Contemporary science and its methodological foundations have been impacted by the big data phenomenon that proclaims that in the age of data measured in petabytes, supercomputers and sophisticated algorithms the scientific method is obsolete and that the hypotheses and models are outdated. The strategies of the scientific big data rely on computational analysis strategies of massive amounts of data to reveal correlations, patterns and rules that will generate new knowledge, ranging from the exact sciences to the social sciences, humanity and culture, outlining an archetype of data-driven science. The present essay addresses the debates around data-driven science as opposed to hypothesis-oriented science and analyzes some of the ramifications of this epistemological confrontation. For this, the writings of some authors who are more closely involved in this question are taken as methodology. 

 

References

ANDERSON, Chris. The end of theory: the data deluge makes the scientific method obsolete. Science. Wired, 2008. Disponível em: < https://www.wired.com/2008/06/pb-theory/ >. Acesso em: 25 março 2019.

danah boyd & Kate Crawford. Critical questions for big data. Information, Communication & Society, v. 15, n. 5, p. 662-679, 2012. Disponível em: <http://dx.doi.org/10.1080/1369118X.2012.678878>. Acesso em 20 março 2019.

GUO, Philip. Data science workflow: Overview and challenges. Disponível em: <http://pgbovine.net/CACM-data-science-workflow.htm>. Acesso em 20 março 2019.

KITCHIN, Rob. Big Data, new epistemologies and paradigm shifts. Big Data & Society, v. 1, n. 12, 2014. Disponível em: <https://journals.sagepub.com/doi/full/10.1177/2053951714528481>. Acesso em: 20 março 2019.

LATOUR, Bruno. Tarde’s ideia of quantification. In: CANDEA, Matei. The social after Gabriel Tarde: Debates and Assessments. London : Routledge, 2009, p.145-162. Disponível em <https://hal-sciencespo.archives-ouvertes.fr/hal-00973004/document>. Acesso em: 20 março 2019.

MAYER-SCHÖNBERGER, Viktor; CUKIER, Kenneth, Big data: A revolution that will transform how we Live, work, and think. Boston : Eamon Dolan/Houghton Mifflin Harcourt, 2013.

MANOVICH, Lev. The promises and challenges of big social data. 2011. Disponível em <http://manovich.net/content/old/03-articles/64-article-2011/64-article-2011.pdf>. Acesso em: 30 março 2018.

MAZZOCCHI, Fulvio. Could big data be the end of theory in science? EMBO Reports, v. 16, n. 10, 2015. Disponível em: <https://onlinelibrary.wiley.com/doi/full/10.15252/embr.201541001>. Acesso em: 30 março 2018.

NAIMI, Ashley; WESTREICH, Daniel. Big data: A revolution that will transform how we Live, work, and think. American Journal of Epidemology, v.179, n. 2014. Disponível em: <https://academic.oup.com/aje/article/179/9/1143/2739247>. Acesso em: 25 março 2019.

PIGLIUCCI, Massimo. The end of theory in science? EMBO reports, v. 10, n. 6, 2009. Disponível em: <https://onlinelibrary.wiley.com/doi/full/10.1038/embor.2009.111>. Acesso em: 25 março 2019.

RODRIGUES, Eloy; SARAIVA, Ricardo. Os repositórios de dados científicos: estado da arte. Porto: RCAAP, 2010. https://repositorio-aberto.up.pt/handle/10216/23806 Disponível em: <https://repositorio-aberto.up.pt/handle/10216/23806>. Acesso em: 07 dez. 2018.

SAYÃO, Luis Fernando. Modelos teóricos em Ciência da Informação: abstração e método científico. Ciência da Informação, v. 30, n. 1, p. 82-91, jan./abr. 2001 Disponível em: <http://www.scielo.br/pdf/ci/v30n1/a10v30n1>. Acesso em: 25 março 2019.

SCHMITT, Charles et al. Scientific discovery in the era of Big Data: More than the scientific method. RENCI White Paper Series, v. 3, n. 6, p. 1-22, 2015. Disponível em: <https://renci.org/wp-content/uploads/2015/11/SCi-Discovery-BigData-FINAL-11.23.15.pdf>. Acesso em: 12 dez 2018.

THE ROYAL SOCIETY. Science as an open enterprise. London: The Royal Society Science Policy Centre, 2012. Disponível em: <https://royalsociety.org/~/media/policy/projects/sape/2012-06-20-saoe.pdf>. Acesso em: 23 março 2019.

Published

28/06/2019

Issue

Section

Digital Humanities: Views from the South