Estimating Future Collaborations on Data on Scientific Activities
DOI:
https://doi.org/10.18225/ci.inf.v49i3.5470Keywords:
scientific collaboration, link prediction, Lattes PlatformAbstract
In a scientific collaboration network, a connection is formed when two or more scientists publish a work together, in which case, the works represent the edges, and the scientists represent the nodes of the network. Using concepts from the analysis of social networks, it is possible to better understand the relationship between nodes. The work in question aims to make the prediction of connections in co-authorship networks formed by PhDs with curricula registered in the Lattes Platform, and whose area of activity is Information Sciences. Currently, the Lattes Platform has 6.6 million curricula of individuals and represents one of the most relevant and recognized scientific repositories worldwide. With this, it is possible to understand the behavior of the network and monitor its evolution over time. For that, some steps are necessary, they are: data extraction, creation of co-authorship networks, definition of the attributes to be used, creation of a data set, and finally, use them as input in a machine learning algorithm. Through the results it is possible to establish, with precision, the evolution of the network of scientific collaborations of the researchers at national level, thus assisting the funding agencies in the choice of future outstanding researchers.
Downloads
References
ADAMIC, L. A., ADAR, E. Friends And Neighbors On The Web. Social Networks, Elsevier, 2003, v.25, n. 3, p. 211–230.
BARABÁSI, A.-L. E ALBERT, R. Emergence of scaling in random networks. Science, American Association for the Advancement of Science, 1999, v.286, n.5439, p. 509–512.
CAÑIBANO, C.; BOZEMAN, B. Curriculum vitae method in science policy and re-search evaluation: the state-of-the-art. Research Evaluation, v. 18, n. 2, p. 86-94, 2009.
CHEN, H., LI, X., HUANG, Z. Link Prediction Approach to Collaborative Filtering. Ieee. Proceedings Of The 5th Acm/Ieee-Cs Joint Conference On Digital Libraries (Jcdl’05), 2005, p.141–142.
DIAS, T. M. et al. Modelagem E Caracterização De Redes Científicas: Um Estudo Sobre A Plataforma Lattes. Brasnam-Ii Brazilian Workshop On Social Network Analysis And Mining, 2013. p. 10–20.
DIAS, T. M. R. e MOITA, G. F. A Method For The Identification Of Collaboration In Large Scientific Databases. Em Questão, 2015, Vol. 21, N. 2, p. 140–161.
DIAS, T. Um Estudo Da Produção Científica Brasileira a Partir De Dados Da Plataforma Lattes. Programa De Pós-Graduação Em Modelagem Matemática E Computacional, Cen-tro Federal De Educação Tecnológica De Minas Gerais, Belo Horizonte (Doutorado), 2016, 181p.
DIGIAMPIETRI, L. A; SANTIAGO, C. R. N.; ALVES, C. M. Predição de coautorias em redes sociais acadêmicas: um estudo exploratório em Ciência da Computação. In: BRAZILIAN WORKSHOP ON SOCIAL NETWORK ANALYSIS AND MINING, 2, 2013, Anais… Maceió, 2013.
DIGIAMPIETRI, L. et al. Um Sistema De Predição De Relacionamentos Em Redes So-ciais. Brazilian Symposium on Information Systems, 2015, V. 11.
HASAN, M. A. e ZAKI, M. J. A Survey of Link Prediction In Social Networks. Social Network Data Analytics. Springer, 2011, p. 243–275.
LANE, J. Let’s Make Science Metrics More Scientific. Nature, Nature Publishing Group, 2010, v. 464, n. 7288, p. 488.
LIBEN-NOWELL, D. e KLEINBERG, J. The Link-Prediction Problem for Social Net-works. Journal of The American Society For Information Science And Technology, Wiley Online Library, 2007, v.58, n.7, p.1019–1031.
LIMA, H. et al. Aggregating productivity indices for ranking researchers across multiple areas. In: PROCEEDINGS OF THE 13TH ACM/IEEE-CS JOINT CONFERENCE ON DIGITAL LIBRARIES, ACM, p. 97-106, 2013.
LIU, Z. et al. Link Prediction in Complex Networks: A Local Naïve Bayes Model. Epl (Europhysics Letters), Iop Publishing, 2011, v.96, n.4, p.48007.
LÜ, L. e ZHOU, T. Link Prediction in Complex Networks: A Survey. Physica A: Statis-tical Mechanics And Its Applications, Elsevier, 2011, v.390, n.6, p.1150–1170.
MARUYAMA, W. T. e DIGIAMPIETRI, L. A. Co-Authorship Prediction In Academic Social Network. Sbc. Anais Do V Workshop Brasileiro De Análise De Redes Sociais E Mineração, 2019. p.79–90.
MENA-CHALCO, J. P.; CESAR-JUNIOR, R. M. Prospecção de dados acadêmicos de currículos Lattes através de scriptLattes. In: HAYASHI, M. C. P. I.; LETA, H. E. J. (Orgs.). Bibliometria e Cientometria: reflexões teóricas e interfaces. São Carlos: Pedro & João, p. 109-128, 2013.
MENA-CHALCO, J. P.; et al. Brazilian bibliometric coauthorship networks. Journal of the Association for Information Science and Technology, v. 65, n. 7, p. 1424-1445, 2014.
NEWMAN, M. E. The structure of scientific collaboration networks. Proceedings of the national academy of sciences, National Acad Sciences, 2001, v.98, n.2, p. 404–409.
NEWMAN, M. E.; PARK, J. Why social networks are different from other types of net-works. Physical Review E, APS, 2003, v. 68, n. 3, p. 036122.
PEREZ-CERVANTES, E. et al. Using link prediction to estimate the collaborative influ-ence of researchers. In: IEEE 9TH INTERNATIONAL CONFERENCE ON ESCI-ENCE (ESCIENCE), 9. Anais… China, Beijin, p. 293-300, 2013.
POTGIETER, A. et al. Temporality in Link Prediction: Understanding Social Complexi-ty. Emergence. Complexity & Organization (E: Co), Citeseer, 2009, v.11, n.1, p.69–83.
SIDONE, O. J. G.; HADDAD, E. A.; MENA-CHALCO, J. P. A Ciência nas Regiões Brasileiras: Evolução da Produção e das Redes de Colaboração Científica. Transin-formação. v. 28, n. 1, p. 15-31, 2016.
ZHOU, T., LÜ, L., ZHANG, Y.-C. Predicting Missing Links Via Local Information. The European Physical Journal B, Springer, 2009, v.71, n.4, p.623–630.
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Thiago Magela Rodrigues Dias

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
- This publication reserves the right to modify the original, regarding norms, spelling and grammar, in order to maintain the standards of the language, still respecting author writing style;
- The final proofs will not be sent to the authors;
- Published works become Ciência da Informação's property, their second partial or full print being subject to expressed authorization by IBICT's Director;
- The original source of publicaton must be provided at all times;
- The authors are solely responsible fo the views expressed within the article;
- Each author will receive two hard copies of the issue, if made availalbe in print.