INDICATOR ANALYSIS FOR SMART CITIES

A systematic review and research agenda proposal

Authors

DOI:

https://doi.org/10.21728/p2p.2024v10n2e-6879

Keywords:

smart cities, indicators, dimensions, systematic review

Abstract

Smart cities integrate technology and agility to address urbanization and governance challenges, as well as enhance the quality of life for their citizens. In this context, it is necessary to understand the indicators that define the construct of smart cities, considering the previously studied theoretical framework. This research aims to map the formative indicators of a smart city through the analysis of articles published on the topic. Additionally, it intends to present a research agenda on the subject to support future studies in this field of knowledge. As a method, a systematic literature review was adopted based on the PRISMA model, with research on the “Periódicos Capes” database. The research considered English-language articles published in the last ten years (2013-2022), using the keywords "smart cities," "indicators," and "framework" as filters. Based on the research, 35 articles were identified, covering a range of specific indicators in their respective areas, allocated within six dimensions. The findings of the research provide contributions for researchers in the field and public officials seeking knowledge about smart cities for practical application.

Downloads

Download data is not yet available.

Author Biographies

  • Rafael Tezza, UDESC

    Professor de Administração Empresarial - UDESC. Doutor em Engenharia de Produção - UFSC

  • Pedro Hochsteiner, UDESC

    Graduando em Administração Empresarial - UDESC

References

REFERÊNCIAS

AHVENNIEMI, H.; HUOVILA, I.; PINTO-SEPÄ, M. A. What are the differences between sustainable and smart cities? Cities, v. 60, p. 234-245, 2017.

AKANDE, A. et al. The Lisbon ranking for smart sustainable cities in Europe. Sustainable Cities and Society, v. 44, p. 475-487, 2019

ANDRADE, M. F.; COUTINHO, M. M.; VASCONCELLOS, A. M. Os efeitos das necessidades humanas para o engajamento do cidadão na adoção de tecnologia para as cidades inteligentes: um estudo aplicado à cidade de Belém (PA). P2P E INOVAÇÃO, v. 10, n. 1, p. 202–225, 2023.

ANTWI-AFARI, P. et al. Modeling the Smartness or Smart Development Levels of Developing Countries' Cities. Journal of Urban Management, v. 10, n. 4, p. 369–381, 2021.

ARMAN, A. et al. Identifying the Components and Interrelationships of Smart Cities in Indonesia: Supporting Policymaking via Fuzzy Cognitive Systems. IEEE Access, v. 7, p. 46136-46151, 2019.

BENITES, A.; SIMÕES, A. Assessing the urban sustainable development strategy: An application of a smart city services sustainability taxonomy. Ecological Indicators, v. 127, p. 107734, 2021.

BRASIL. Instituto Brasileiro de Geografia Estatística. Censo 2022 indica que o Brasil totaliza 203 milhões de habitantes: A alta na população é de 6,4% em relação a 2010. Número de domicílios tem alta de 34% em relação ao último censo e chega a 90,6 milhões de moradias. Serviços e Informações do Brasil, 2023. Disponível em: https://www.gov.br/pt-br/noticias/financas-impostos-e-gestao-publica/2023/06/censo-2022-indica-que-o-brasil-totaliza-203-milhoes-de-habitantes#:~:text=%C2%BB%20Em%202022%2C%20as%20concentra%C3%A7%C3%B5es%20urbanas,viviam%20em%20cidades%20desse%20porte. Acesso em: 12 dez. 2023.

CAIRD, S. P.; HALLET, S. H.. Towards Evaluation Design for Smart City Development. Journal of Urban Design, v. 24, n. 2, p. 188–209, 2019.

CAMPOS, R. O discurso internacional das cidades inteligentes: a estratégia Smart City Berlin. 7o Congresso Luso Brasileiro Para o Planejamento Urbano, Regional, Integrado e Sustentável, p. 3, 2016. Disponível em: https://fau.ufal.br/evento/pluris2016/files/Tema%202%20-%20Cidades%20Inovadoras%20e%20%20Inteligentes/Paper1019.pdf. Acesso em: 01 junho 2023.

CHANCEL, L. et al. World Inequality Report 2022. World Inequality Lab, 2022. Disponível em: https://wir2022.wid.world/www-site/uploads/2022/01/Summary_WorldInequalityReport2022_English.pdf. Acesso em: 01 junho 2023.

CHEN, Y.; SILVA, E. Smart transport: A comparative analysis using the most used indicators in the literature juxtaposed with interventions in English metropolitan areas. Transportation Research Interdisciplinary Perspectives, v. 10, p. 100371, 2021.

CHOI, H.; SONG, S. Direction for a Transition toward Smart Sustainable Cities based on the Diagnosis of Smart City Plans. Smart Cities (Basel), v. 6, n. 1, p. 156-178, 2022.

CONNECTED SMART CITIES. Ranking Connected Smart Cities. Urban Systems, 2022. Disponível em: https://www.aen.pr.gov.br/sites/default/arquivos_restritos/files/documento/2022-10/relatoriorankingcsc2022.pdf. Acesso em: 28 maio 2023.

CUNHA, M. A. Smart Cities: Transformação Digital de Cidades. 1ª ed. São Paulo: FGV EAESP, 2016.

DEBNATH, A. et al. A methodological framework for benchmarking smart transport cities. Cities, v. 37, p. 47-56, 2014.

DAS, D. Perspectives of smart cities in South Africa through applied systems analysis approach: A case of Bloemfontein. Construction Economics and Building, v. 20, n. 2, p. 65-88, 2020.

DASHKEVYCH, O.; PORTNOV, B. A. Criteria for Smart City Identification: A Systematic Literature Review. Sustainability, v. 14, n. 8, p. 4448, 2022. http://dx.doi.org/10.3390/su14084448

DZUPKA, P.; HORVATH, M. URBAN SMART-MOBILITY PROJECTS EVALUATION. Theoretical and Empirical Researches in Urban Management, v. 16, n.4, p. 55-76, 2021.

FARINIUK, D. T. Smart cities e pandemia: tecnologias digitais na gestão pública de cidades brasileiras. Revista de Administração Pública, v. 54. p. 860-873, 2020.

FERNÁNDEZ-ANEZ, V. et al. Smart city projects assessment matrix: connecting challenges and actions in the Mediterranean region. J. Urban Technol, p. 1-25, 2018.

GARAU, C. et al. A Methodological Framework for Assessing Practicability of the Urban Space: The Survey on Conditions of Practicable Environments (SCOPE) Procedure Applied in the Case Study of Cagliari (Italy). Sustainability (Basel, Switzerland), v. 10, n. 11, p. 4189, 2018.

GIFFINGER, R. et al. Smart Cities - Ranking of European medium-sized cities. Vienna University of Technology, p. 28, 2007. Disponível em: https://www.smart-cities.eu/download/smart_cities_final_report.pdf. Acesso em: 01 junho 2023.

HELLIWELL, J. F. et al. World Happiness Report 2023. Sustainable Development Solutions Network, v. 11, p. 25 , 2023. Disponível em: https://happiness-report.s3.amazonaws.com/2023/WHR+23.pdf. Acesso em: 04 junho 2023.

HSU, W. et al. Smart City Governance Evaluation in the Era of Internet of Things: An Empirical Analysis of Jiangsu, China. Sustainability (Basel, Switzerland), v. 13 n. 24, p. 13606, 2021.

KIM, N.; YANG, S. Characteristics of Conceptually Related Smart Cities (CRSCs) Services from the Perspective of Sustainability. Sustainability (Basel, Switzerland), vol. 13, n 6, p. 3334, 2021.

KLOPP, J.; PETRETTA, D. The urban sustainable development goal: Indicators, complexity and the politics of measuring cities. Cities, v. 63, p. 92-97, 2017.

KOURTIT, K. et al. Comparative Urban Performance Assessment of Safe Cities through Data Envelopment Analysis. Regional Science Policy & Practice, v. 13, n. 3, p. 591–602, 2021.

KOURTIT, K.; NIJKAMP, P. Big data dashboards as smart decision support tools for i-cities – An experiment on Stockholm. Land Use Policy, v. 71, p. 24-35, 2018.

KUTTY, A. A. et al. Urban Resilience and Livability Performance of European Smart Cities: A Novel Machine Learning Approach. Journal of Cleaner Production, v. 378, p. 134203, 2022.

LIN, C. et al. Smart City Development and Residents’ Well-Being. Sustainability, v. 11, n.3, p. 676, 2019.

LIU, J. et al. Towards sustainable smart cities: Maturity assessment and development pattern recognition in China. Journal of Cleaner Production, v. 370, p. 133248, 2022.

MOHER, D. et al. THE PRISMA GROUP. Principais itens para relatar revisões sistemáticas e meta-análises: A recomendação PRISMA. Epidemiologia e Serviços de Saúde, v. 24, n. 2, p. 355-342, 2015.

MOUSTAKA, V. et al. Urban Data Dynamics: A Systematic Benchmarking Framework to Integrate Crowdsourcing and Smart Cities’ Standardization. Sustainability (Basel, Switzerland), v. 13, n.15, p. 8553, 2021.

NIETO BERNAL, W.; GARCÍA ESPITALETA, K. Framework for Developing an Information Technology Maturity Model for Smart City Services in Emerging Economies: (FSCE2). Applied Sciences, v. 11, n. 22, p. 10712, 2021.

NTAFALIAS, A. et al. A Comprehensive Methodology for Assessing the Impact of Smart City Interventions: Evidence from Espoo Transformation Process. Smart Cities (Basel), v. 5 n. 1, p. 90-107, 2022.

OGRODNIK, K. Multi-criteria analysis of smart cities in Poland. Geographia Polonica, v. 93 n. 2, p. 163-181, 2020.

LEKA, A.; STRATIGEA, A.; PANAGIOTOPOULOU, M. In search of indicators for assessing smart and sustainable cities and communities' performance .Int. J. E-Plan. Res, vol. 6 n. 1, p. 43-73, 2017.

LOPEZ-CARREIRO, I.; MONZON, A. Evaluating sustainability and innovation of mobility patterns in Spanish cities. Analysis by size and urban typology. Sustainable Cities and Society, v. 38, p. 684-696, 2018.

POLIAKOVA, O.; POZDNIAKOVA, A. A METHODOLOGICAL APPROACH TO EVALUATING THE PROGRESS OF THE IMPLEMENTATION OF THE SMART CITY CONCEPT IN UKRAINIAN CITIES. Problemi Ekonomìki, v. 1, n. 1, p. 74-82, 2019.

PURNOMO, F.; MEYLIANA.; PRABOWO, H. Smart City Indicators: A Systematic Literature Review. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), v. 8, n. 3, p. 161–164, 2016.

RAHMANI MOKARRARI, K.; TORABI, S. Ranking cities based on their smartness level using MADM methods. Sustainable Cities and Society, v. 72, p. 103030, 2021.

REBERNIK, N. et al. Measuring Disability Inclusion Performance in Cities Using Disability Inclusion Evaluation Tool (DIETool). Sustainability (Basel, Switzerland), v. 12 n. 4, p. 1378, 2020.

SENOUSI, A. et al A Proposed Framework for Identification of Indicators to Model High-Frequency Cities. ISPRS International Journal of Geo-information, v. 10, n. 5, p. 317, 2021.

SHARIFI, A.; ALLAM, Z. On the taxonomy of smart city indicators and their alignment with sustainability and resilience. Environment and Planning B: Urban Analytics and City Science, v. 49, n. 5, p. 1536-1555. https://doi.org/10.1177/23998083211058798. 2022.

SHARIFI, A. A critical review of selected smart city assessment tools and indicator sets. Journal of Cleaner Production, v. 233, p. 1269-1283, 2019. https://doi.org/10.1016/j.jclepro.2019.06.172.

SHARIFI, A. Smart City Indicators: Towards Exploring Potential Linkages to Disaster Resilience Abilities. APN Science Bulletin (Online), v. 2022, n. 1, p. 76–90, 2022.

SHEN, L. et al. A holistic evaluation of smart city performance in the context of China. Journal of Cleaner Production, v. 200, p. 667-679. 2018.

SHRUTI, S.; SINGH, P.; OHRI, A. Evaluating the Environmental Sustainability of Smart Cities in India: The Design and Application of the Indian Smart City Environmental Sustainability Index. Sustainability (Basel, Switzerland), v. 13, n. 1, p. 327, 2021.

TAN, M. Creating the digital economy: Strategies and perspectives from singapore. International Journal of Electronic Commerce, v. 3, n. 3, p. 105-122, 1999.

WENDLING, L. et al. Benchmarking Nature-Based Solution and Smart City Assessment Schemes Against the Sustainable Development Goal Indicator Framework. Frontiers in Environmental Science, v. 6, 2018.

WESTRAADT, L., & CALITIZ, A. A modeling framework for integrated smart city planning and management. Sustainable Cities and Society, v. 63, p. 102444, 2020.

YEH, H. The effects of successful ICT-based smart city services: From citizens' perspectives. Government Information Quarterly, v. 34, n. 3, p. 556-565, 2017.

ZAIDAN, E. et al. Accelerating the Change to Smart Societies- a Strategic Knowledge-Based Framework for Smart Energy Transition of Urban Communities. Frontiers in energy research, v. 10, 2022.

ZAPOLSKYTE, S. et al. Evaluation Criteria of Smart City Mobility System Using MCDM Method. The Baltic Journal of Road and Bridge Engineering, v. 15, n. 4, p. 196-224, 2020.

Published

25/03/2024

How to Cite

TEZZA, Rafael; HOCHSTEINER, Pedro; KIELING, Ana Paula. INDICATOR ANALYSIS FOR SMART CITIES : A systematic review and research agenda proposal. P2P & INOVAÇÃO, Rio de Janeiro, RJ, v. 10, n. 2, p. e-6879, 2024. DOI: 10.21728/p2p.2024v10n2e-6879. Disponível em: https://revista.ibict.br/p2p/article/view/6879. Acesso em: 31 may. 2025.

Similar Articles

1-10 of 130

You may also start an advanced similarity search for this article.